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Gas chromatographic columns typically operate with atmospheric exit pressure 
and an inlet pressure in the range of IO to 30 p.s.i.g. The upstream pressure is required 
to overcome the frictional losses for gas transport through the packed bed. If one 
were to ride along with a tagged sample of carrier gas, it would be observed that the 
velocity of the gas increases as the exit of the bed is approached. It is the purpose 
of this discussion to evaluate the effects this gas expansion has upon the operating 
behavior of the chromatographic column. 

KEULEMANS~ recognized that the residence time of the carrier gas is decreased 
by gas expansion but did not incorporate this observation into his so-called rate 
moclel for chromatograph operation. The rate model appeals to chemical engineers 
because this model has enjoyed considerable success in application to other fixed-bed 
processes, The current chromatographic literature apparently favors the “HETP” 
model; undoubtedly this preference stems from the ease with which physical intuition 
may be used to model transport processes. This paper attempts to show that the rate 
model can include the contribution of gas expansion without appeal to “physical 
reasonableness”. 

The development of the rate model proceeds through combination of material, 
rate and equilibrium equations. The resulting partial differential equation is reduced 
to an ordinary differential equation by use of the Laplace transform, and the solution 
to the problem is found from the moments of transformed equation. Dimensional 
variables are indicated by lower case letters*, dimensionless variables are denoted by 
upper case letters, and dimensionless groups are symbolized by upper c,ase script 
letters. Reference conditions for dimensionless variables are taken at the inlet to the 
column. Inlet conclitions are indicated by a subscript “0” and outlet values by the 
subscript “I”. 

The rate of gas flow through a packed bed has received considerable attention, 
and for a differential segment of a column the velocity is proportional to the pressure 
gradient 

(1) 

The parameter 1~ of eqn. (I) is a function of viscosity, void fraction and the units 
chosen for the equation. ERGUN~ has shown that the parameter N is a function of the 
particle Reynolds number and therefore is constant in an isothermal chromato- 
. * Lower cilse “s” is usd exclusively for the Laplacc transform pscrsmetcr. 
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2 J. W. OLSON 

graphic column. The Reynolds number for a chromatograph is usually less than 10 
and consequently the parameter N is unity; the flow in the packed column is 
“laminar”. Eqn. (I) may be combined with the ideal gas law and integrated; the 
di.mensionless density, velocity and residence time which stems from this integration 
are given as follows: 

p p (I -&X)1/2 
I-= 

PO 

u z‘ (I -J-&+X)-l/2 =:-= 
MO 

(24 

(2b) 

where p, p. are the fluid densities at any point and at the inlet of the bed; 
&’ is a dimensionless group evaluated experimentally through eqn. (za) or 

which also may be.found from the ERGUN~ relation; 
X = z/J is the dimensionless length parameter in the column; 

70 = Z/zs, is the transit time through the bed based upon initial conditions in 
the column ; 

z is the actual transi.t time to a point in the column. 
Eqns. (za) to (PC) have been developed before 1; the task of this discussion is to 

incorporate these parameters into the differential equations which describe column 
operation. 

Although there is some experimental evidence to the contrary for packed beds, 
the usual form of the axial diffusive transport equation for packed beds ignores the 
contribution of pressure diffusion and thus the mole flux of a binary mixture is given as 

n, = - pd,ep CdYG + Y’(% + %) 

in which nu is the mole flux of component a, 7~ is the mole flux of carrier gas, p is the 
molal density, deff is the effective bed diffusively, Y’ is the mole fraction of a, and 
the sum of Na -/- n8 is constant in an isothermal packed column, It is further assumed 
that axial diffusive processes are binary; this assumption is valid very shortly after 
the pulse has entered the column. Thus the material balance equation for a differential 
segment of a packed bed is the familar relation 

FOP 
art/ 
at -I- F,$ = F,-j-(pdenr&$) - puF, y; 

, 
(4d 

Before putting eqn. (da) into dimensionless form, it is necessary to note that dcfr 
depends upon molecular diffusivity, eddy axial diffusivity (caused primarily by 
differences in gas transit times around particles) and the packing density of column. 
The effective diffusivity-density product is defined by the relation 

Pd?n 
, p&e = 7 i- pdc (4b) 
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EPPECT OF GAS EXPANSION ON PEAK WIDTH IN GC 3 

The tortuosity factor, T, accounts for the longer path lengths which molecules make 
while diffusing around the bed packing by molecular processes. The tortuosity contri- 
bution is included in the usual correlations of the eddy diffusivity, de, The pd, product 
is constant for molecular diffusion in the pressure range of 0.1 to IO atrn and thus the 
pd, term does not change throughout the bed. Somewhat in contrast to the usual 
analysis given in textbooks upon chromatography, CAIRNS AND PRAUSNIT~ have 
shown that the eddy axial diffusivity of both gases and liquids is best correlated as a 
function of the interstitial velocity alone. There is a transition region between the 
“laminar” and “turbulent” packed-bed flow regimes in which the axial diffusivity is 
nearly independent of velocity. Wowever gas velocities are seldom high enough to be 
in the transition region in chromatograph operation. Thus in this analysis it is assumed 
that the density-axial ed.dy diffusivity product, pdc, is also independent of position 
within the column. Thus upon substitution of eqns. (za-c) into eqn. (da) the dimension- 
less form of the material balance equation is obtained as: 

P au ga2Y 
Fe; i3T 

pTaQ+aY -- 
Tel i3T ax = axz 

(5) 

The dimensionless parameters in eqn. (5) have the following significance : 

T = t/(~,T,l) dimensionless time ; 
Tel = Te evaluated at the end of the column and is incorporated to render the 

transit time through a bed of inert packing as unity; 
X = F8g,/FOp,,YO’ the distribution parameter; 
@ = d,&zc,l the inverse length Peck% (Bodinstein) number; 

P 

= Y’/Y,’ relative mole fraction in the gas phase ; 

= q/qco dimensionless concentration in the solid phase; 
o’ = reference mole fraction absorbable component in gas phase; 

Q = average solute concentration in the solid phase; 

(103 = the solid concentration in equilibrium with Y,‘p,,; 
N = Henry’s law constant defined from Y,‘p, = Hq,. 

The mass transfer rate between the gas and the solid can be represented adequately 
(this point will be extended below) by the two-film model as: 

- = k,ap( Y’ - Y’i) = Iz#a(qi - q) 
at 

(6) 

where 12, is the gas film mass transfer coefficient; 
12, is the “solid film” mass transfer coefficient; 
a is the area to volume ratio for the solid phase: 
subscript i denotes interfacial conditions. 

A typical form of the correlation for the gas-film mass transfer coeficient* has 
the following form: 

*,I5 (y%)-l’2 (&)-2’s 
(7) 

in which Y~z,~, the log-mean inert (carrier) gas correction is essentially unity for 
chromat ograph operation. Since the Reynolds number and Schmidt group are in- 
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4 J. N. OLSON 

dependent of pressure for dilute solute conditions, the gas-film mass transfer co- 
efficient is given as 

Icy = k,o u 

and kyo is independent of gas pressure, 
Thus in dimensionless form eqn. 

aQ 

where .F - (kyOuZ/zc,,) NT,1 = number 
conditions ; 

w 

(6) b ecomes 

(9) 

of gas-film transfer units based upon entrance 

c!Y = (12&?uZ/2bo) Tel = number of solid-film transfer units based upon entrance 
conditions. 

The assumption of linear gas-solid equilibrium yields a dimensionless equation 
connecting the inter-facial compositions 

PYf = QC (10) 

Ys and Qr can be eliminated from eqn. (9) to obtain a simplified rate expression 

a3 - = @(PY-Q) 
aT 

(11) 

where 94? = ,FP’/(.F + 9P), a dimensionless overall rate parameter which is a 
function of position in the bed. 

Denoting, a Laplace transformed variable by an overbar and assuming that 
pulse samples are fed to the column, eqns. (II) and (5) are combined through Laplace 
transformation to yield 

SPY ( 
L%Fgi? 

T-T- I+--- ) -I- 
cl7 &2?? 
-= -- re? s+a? ClX CUP 

(12) 

where s is the Lsplace transform parameter. 
The simplest and perhaps most useful boundary conditions for eqn. (12) are 

that the column is fed with a Dirac pulse and can be considered to be a finite section 
of a column of infinite length. Accordingly, 

Y(o) = I (134 
and 

,lla Y = 0 (13b) 

A useful approximate solution to eqns. (12) and (13) is obtained by computing 
the moments of Y(X). The .nth moment of the output response is defined as 

s CrJ 

vzfh moment about ..& = (T-dv)nY(X, T)& (14) 
0 
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EFFECT OF GAS EXPANSLON ON PEAK WIDTH IN GC 5 

When& is zero the moments are said to be about the origin, and whenA is the first 
moment about the origin (the mean), the higher moments are “about the mean”. 

In chromatography the zeroth moment, the area under the peak, is proportional 
to the quantity of trace component fed into the column. The first moment about the 
origin is a linear function of the absorptivity of the partitioning fluid for the trace 
component. The second moment about the mean or variance is used to characterise 
the spread of the peak; the magnitudes of the variance measure the extent of over- 
lapping of two adjacent trace components. The variance is the highest moment that 

, is commonly used to describe the spreading of the peaks, for it is found that the 
chromatographic response for most systems is very nearly Gaussian. Thus if one treats 
cqn. (12) by a method whereby the first two moments of the response function may 
be recovered, then a useful description of the system response is established. 

Upon change of the independent variable from X to P eqn. (12) becomes 

1 cl? zP2 
=--_=--~ I$--__ 
Y dP T,&’ ( 

x24? 

s+a ) 
d6? LZ?.f 

( 

I dy p---m 
2PY dP2 P dP I . . (ES) 

Eqn. (IS) may be solved by Picard’s method, and the moments cf the response 
function Y are found from the operation 

lim 
s-B0 

TnY(T,X)dT 

Although the algebra is messy, the moment solution is straightforward 
yields the following results : 

(16) 

and 

(17b) 

Zcroth moment = I = A?0 

First moment (mean) = ..&I = (I + x> (I - ($E) [(r -P) + 

5($-I) f8”($-I) + 3F3(&-I) -I- 15E”(&- I) + 

(174 

1059 ($- I) + 94.56~ (& +]) 

Second moment about the mean (variance) : 

A2 = $q$+) +$[f-g) - (E) 2(x- P)] + 

+ (1 +XJ2 ($!-) [(L%F) + (g) (-8d + 2ElnP + 6E2(l -2) + 

E 
a?&$+ JB (I-P) 

=--= ----s 
2 Tc1 3 

EL perturbation parameter. 
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Eqn.. (17b) indicates that the form of the mean is altered only in a minor way 
when gas expansion is considered. The time scaling parameter for the mean (~/zs,,)T~z 
is selected to preserve the form of the mean; the time scaling parameter is the transit 
time through the external voidage of the column. The effect of gas expansion decreases 
the holding time in the bed through coupling with the axial dispersion parameter. 
One may note that all of the terms inside the square brackets of eqn. (z7b) are positive. 
Since the parameter @ is small (see the example problem which follows) in chromato- 
graphic operation, the contribution of gas expansion is small. 

The variance for column operation without expansion is given as follows: 

Examination of eqn. (17~) indicates that when P approaches unity eqn. (17~) approa- 
ches eqn. (18). One notes that gas expansion may make a significant contribution 
to the width of the sample peak. One also notes that .@/T,z is the inverse length 
Peclet number based upon the actual transit time in the column. 

To gain a more complete appreciation for the significance of eqns. (z7b) and 
(I~c), it may be useful to attempt an a $vGori estimation of the peak behavior of a 
representative gas chromatograph column. This computation is divided into two 
parts: first a calculation of the parameters in the model and then an approximation 
of the output peak shape. 

An outline of the parameters in the model is as follows: 
I. 
2. 

39 
4s 
5. 

Estimate the inlet velocity with the ERGUN relation. 
Find the capacity parameter X from the “popcorn” model for the chromato- 
graphic support. 
Use the CARBERRY relation to find ,F. 
Evaluate 9 with the “solid-diffusion” model. 
Estimate the Peck% group parameter with CAIRN’S data and the molecular 
diffusivity. 

The sample problem is based upon the physical parameters shown in Table I. 

TABLE I 
PEWSICALPARAMETERSBORASAMPLE CALCULATION 

Carrier gas : helium 
Sample : n-butane 
Column length: 2 m 

~1 II 1.85 x 10’~ poise 

Column temperature : 3oo” I< 
Column support: porous 80-120 mesh “chromosorb”, 1.5 x 10-2 cm diameter 
External voids in the column: F,, = 0.42 
Gas volume fraction in support: F,r = o.Go 
Liquid volume fraction in support : Fli: = 0. IO 
I-Ienry’s Law constant : k = 200 torr/ (gmol/l) 
BET. port radius (2ztp/up) = 50 A 

The exit pressure of the column is assumed to be atmospheric, and the set of pressure 
drops across the column which are used in this calculation as the independent variable 
are listed in Table Il. 
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TABLE II 

SAMPLE CALCULATION 

Second moment 

4 0.785 0.383 0.903 2.2 0.036 14.8 2.96 23.4 3.09 1.18 0.834 1.79 0.159 
8 0,647 0.582 0.834 3.9 0.079 x4.8 1.84 12.0 2.18' 2.30 1.28 I.70 0.108 

I2 0.550 0.698 0.796 5.3 0.118 14.8 x.46 8.43 1.88 3.28 1.55 1.64 o.I.oG 

16 0.478 0.772 0.778 G.4 0.18 14.8 1.17 G.85 1.74 4.28 1.86 I,58 0.110 
20 0.423 0.822 0.748 7.3 0.23 14.8 0.983 5.73 1.66 4.82 2.21 1,576 0.114 

'r 

H = 0.10;s = 12.8. ". 

The ERGUN correlation is given by eqn. (~g) 

( 475 %& JcrR, _I.-- 
9 w?P )( ) 

+ &r$ = 300 -I- 3.5 -y 
a 

(19) 

One finds that the second right-hand term does not contribute significantly to the 
arithmetic mean velocity, Ztm; this fact means that the gas flow is laminar. 

The “popcorn” model for the chromatographic support gains the appellation 
from descriptions of the photomicrographs of these materials. The loaded support is 
viewed as resembling caramel popcorn; the liquid partitioning fluid is distributed 
rather uniformly upon the rough surfaces of the diatomaceous earth. The absorbable 
components of the sample reach the partitioning liquid by the following steps: con- 
vection with the carrier gas, diffusion through the “gas film” around the support 
particle, diffusion through the void spaces of the solid support, and finally absorption 
into the partitioning liquid. A material balance upon an absorbable component in 
the interior of the support yields the following equation for the definition of the 
dimensionless Henry’s law constant, H : 

Ii? = 
Jl 

FgtJt + R’T’Flt (20) 

where 12 = dimensional Henry’s law constant, torr/(gm.ol/l) ; 

R’T’ = gas constant x absolute temperature with units of k; 
I;,$ = volume fraction gas in the interior of the support; 
F1t = volume fraction absorber liquid jn the support. 

The parameter F,g may be calculated from the “pore volume” of the support 
and the parameter 1;zt may be calculated from the weight loading of the support. The 
parameter .S is then found as 

x FL? =-- 
F,H (21) 
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8 J. W. OLSON 

The CARBERRY model (eqn, 7) may be combined with the definition of the para- 
meter S to yield 

&&kz_T&? (22a) 

= (6.27 x Io+V~E~-~/~T~E (22b) 

The solid-diffusion transport parameter is defined after eqn. (9) as 

It may be shown that the mass-transfer 

haa = $5 

(23a) 

parameter is adequately represented as 

I (23b) 

where & is the effective internal diffusivity in the particle. The internal diffusivity 
has been shown by MASON” to be given by the relation 

dt (cm2/sec) = 0.842 x IO-~ (?.%)(y2c$ (24) 

where in eqn. (24) 
M = molecular weight of the diffusirrg component; 
T = absolute temperature, “K; 

VP = B.E.T. pore volume, cm2/g support; 

% = B.E.T. surface area, m2/g support; 
T = tortuosity in the support. 

Equation (24) is based upon the dusty-gas model for Knudsen diffusion within 
the support. WEISS~ has shown that the tortuosity is best correlated as 

T = ?+_ 
F,i 

(25) 

The parameters in Table I are inserted into eqns. (zsa), (24) and (~5) to yield 
the values given in Table II. 

The inlet inverse Peclet group, g, is found from eqn. (5) as 

B Pdm =-- + & -- 
PO~OlTol POUOJ * - 

(26) 

The eddy diffusivity is found from the CAIRNS AND PRATJSNITZ~ correlation to be in 
the “laminar” range in which 

(27) 
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EFFECT OF GAS EXPANSION ON PEAK WIDTH IN GC * 9 

The first right-hand term of eqn. (26) is roughly inversely proportional to the inlet 
velocity and the second term is independent of inlet velocity. The calculated values 
for the inverse Peck% group are listed in Table II. 

The terms which appear in eqn. (17~) thus have been estimated from existing 
correlations; the evaluation of the second moment, A’,, is listed in the last four 
columns of Table II. It may be seen that the fluid-film mass transfer resistance does 
not contribute to this moment; the axial dispersion processes are the most important 
sources of peak-width. 

The small contributions of gas expansion and mass transfer to the moments 
indicate that an adequate approximation for the response of the system may be found 
from the solution to the equation 

(28) 

with the boundary conditions of eqns. (Isa) and (13b). In terms of the first and second 
moments the solution to eqn. (28) is found to be 

where 
2vH2T 

c&t=-- 
.Adl 

The approximate solution is obtained by using the values for A?~ 
(r7b) and (17~) in eqn. (29). The calculated response for dp = 12 
Fig. I. It may be seen that a slight “tail” is found in the peak. 

(29) 

and .A!, of eqns. 
p.s.i. is shown in 

l,bl I I I , I I I lg I I II I I I l&I I 

Dimensionless time 

Fig. I. Cdculatecl signal ZJS. climcnsiotiless time. . 
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CONCLUSIONS 

It has been shown that the effect of gas expansion upon the operation of a gas 
chromatograph may be estimated with the rate model for column operation. I-Iowever, 
it has been f.ound that the contribution of gas expansion is likely to be small for 
typical conditions of column operation. Thus one may use the incompressible fluid 
form of the rate model for chromatographic separations merely by using the average 
velocity in the bed. 

NOMENCLATURE 

Dimensional variables 

= external area of support/volume of support, cm-l 
= B.E.T. surface area, ms/g support 
= eddy diffusivity, cm‘J/sec 
= effective diffusivity, cms/sec 
= internal diffusivity, cmg/sec 
= molecular diffusivity, cmg/sec 
= particle dia,meter, cm 
= gravitational force constant 
= I-Ienry’s law constant torr/(gmol/l) 
= gas-film mass transfer coefficient, cm/set 
= solid-film mass transfer coefficient, cm/set 
= length of bed, cm 
= mol flux of adsorbable component, gmol/cm2 l set 
= mol flux of inerts, gmol/cm2 l set 
= pressure, dynes/cm2 
= concentration in solid phase, gmol/l 
= concentration in solid phase in equilibrium with p,,Y,’ 
= Laplace transform variable 
= time, set 
= interstitial velocity, cm/set 
= initial interstitial velocity, cm/set 
= inlet superficial velocity, cmysec 
= axial distance, cm 
= viscosity, poise 
= kinematic viscosity, cm2/sec 
= gas density, gmol/cm3 
= gas density at inlet 
= carrier gas transit time through column, set 
= Z/u,, carrier gas transit time through the column based upon .initial condi- 

tions, set 

Dimmsionless variables 

&I = external gas volume per volume of bed 
1;8 =(I -F,), volume fraction apparent solid phase 
F,t = volume fraction gas in the solid phase 

.I. Ckronaatog., 27 (1967) I-13 



EFFECT OF GAS EXPANSION ON PEAK WIDTH iN GC 

r+l$ = 
H z 

P = 

Q = 
T = 
c. 1, = 
Tel = 
u = 
x = 
Y = 
y' = 
Y,’ = 
T = 

volume fraction partitioning liquid in the solid phase 
Henry’s Law parameter defined in ecln. (20) 

p/pot dimensionless pressure 

(llz* J dimensionless soiid phase concentration 
t/(t,T,z) , dimensionless time 
z/z,, residence time contraction ratio 
Te evaluated at the end of the bed 
zc/ti,,, dimensionless velocity 
x/l, dimensionless length 
Y/Y,, dimensionless mole fraction 
mole fraction of absorbable component 
reference mole fraction absorbable component 
tortuosity 

DiwaensionZess gvoa$x 

I - (pl/pO)2, gas expansion group 
dc+,Z, inverse length Peclet group 
(I~~,aZIJTez)/u,, fluid-film transport group 
~Sq*l~opOYO, s equilibrium parameter 
first moment about origin 
variance 
dpzc,/v,, Reynolds number 
SW’/(,F + ._Y’.P), number of transfer units 
(k&T&/~,, solid-film transport group 
B&‘/z, perturbation group 

APPENDIX: SOLUTION TO EQUATION (Is) 

Eqn. (Is) is rewritten as 

IL 

(A.11 

where 

G 
2P2 

= --&*.jc sz; 

% 
.cwsj? 

=I+ ---_; 
s +a? 

and E = &E@‘/z and is a perturbation expansion parameter. 
Differentiation with respect to P shall be denoted by a prime (‘) and the 

iterativesolutionsfor Y are indicated as Yj. The solutions are obtained by the definite 
integration of eqn. (AI) : 

111 (Vi/l) = 
s 

f GclZP* (star = clummy variable) (A.2) 
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L2 

-1 = exp 
s 

P 
GdP' 

1. 

and 

-#I Yl. = (G2 + G')YI 

Thus 

dlnFg G --= - 
dP 

where 

H = G ($) + ($)’ 

Thus by iteration 

J. W. OLSON 

. (A.3a) 

(A.41 

I =2$ + (ci)’ 

J 
2GI + IP 

=-- 
P 

t ($)’ 

K= 
2GJ ; 2~1 ,_ (f,’ 

Eqn. (A.6) is of the form of a moment generating function. The zeroth moment of Y, 
related to the area of the chromatographic peak, is unity because the limits of G, E?, 
-r,J... as s approaches zero are zero. The first moment of Y is obtained. as 

(G--H f pw-+3~ . ..)dE)’ d (A.71 

Denoting differentiation and the limiting process with respect to the Laplace trans- 
form variable with an overdot ( ’ ), eqn. (A.7) is then written as 

&?I. = s +_Eti +pL93j*..)clP” fA.8' 
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EFFECT Ol? GAS EXPANSION ON PEAK WIDTH IN GC 

In like manner the second moment about the mean is found as 

One then applies the chain rule to obtain eqn. (17). The coefficients in eqns. (A.8) 
and (A.g) are listed in Table AI. 

TABLE AI 

COEFFICIENTS OF TERMS 

Function &pa.’ (A 3) Eqn. (A*g) Eqn. (A.g) Eqn. (A.g) 

z 
x 
L 
M 

Pa - -732 -Pa 

!-p-a 
ZP3 &i -P 
8P - 

-I-3P-4 --zP-” -_3p-” - 
-15P-” 1zP-3 +1gp-" - 
+ 1ogP-fl 

,$z;" 
---logP-e - 

-g45P-‘Q +945p-‘0 - 

SUMMARY 

The effect of gas expansion upon peak width is estimated for the “rate model” 
formulation of the transport processes in a chromatograph. The retention parameter 
is reduced by gas expansion, and the peak variance is increased. The rate model is 
useful for a J!JI+& estimates of column performance. 

REFERENCES 

I A. 1. M. KEULEMANS, Gas Clwomalograpl~y, Rcinholcl Publishing Corp.. New York, 1957. 
2 S. ERGUN, Cl&em. Eng. Pvog., 48 (1952) 89. 
3 E. J. CAIRNS AND J. M. PRAUSNITZ, CJzcm. En/r. Sci., 12 (IgGol 20. 
q J, f, CARBERRY, A&. 1gzst. CJtem. Engrs. J., G rIgGo) 4Go.‘ _ ’ 
5 E. A. MASON, R. B. EVANS AND G, M. WATSON.J. CJtem. PJtys., 35 (x961) 2076. 
6 P. B. WEISS AND A. B. SCHWARTZ, J. Catalysis, I (IgGz) 399. 

J. Chvomalog., 27 (19%‘) I-13 


